Hatching controlled by the circatidal clock, and the role of the medulla terminalis in the optic peduncle of the eyestalk, in an estuarine crab Sesarma haematocheir.
نویسنده
چکیده
Embryos attached to the female crab Sesarma haematocheir hatch synchronously within 1 h. Hatching is also synchronized near the time of the expected nocturnal high tide. These events are governed by a single circatidal clock (or pacemaker) in the female crab. The present study examined the role of the optic peduncle of the eyestalk on hatching and hatching synchrony. Surgery was performed either from the tip of the eyestalk [to remove the region of the optic peduncle from the compound eye-retina complex to the medulla interna (MI)] or from a small triangle 'window' opened on the eyestalk exoskeleton [to create lesions on the medulla terminalis (MT) of the optic peduncle]. Neither hatching nor hatching synchrony was affected by removal of the region of the optic peduncle from the compound eye-retina complex to the MI: the circatidal rhythm also remained. Removal of the MI probably caused damage to the sinus gland and the bundle of axons running from the sinus gland to the X organ. Nevertheless, maintenance of highly synchronized hatching indicates that the X organ-sinus gland system is not related to hatching. Hatching and hatching synchrony were not affected by dorsal-half cuts of the MT: the timing of hatching was not affected either. By contrast, transverse and ventral-half cuts of the MT caused severe damage to most females; hatching of many females was suppressed, while hatching of some females was either periodic, at intervals of approximately 24 h, or arrhythmic for a few days. The bundle of neuronal axons is tangled in the MT, and the axons inducing hatching pass through the ventral half of the MT. Complete incision of these axon bundles may have suppressed hatching. Incomplete incision of the axon bundle or partial damage to the neurons may have caused periodic or arrhythmic patterns of hatching. There are two possible roles for MT in hatching. One possibility is that neurons in the MT only induce hatching under the control of the circatidal pacemaker located in a site somewhere other than the optic peduncle. Another possibility is that the circatidal pacemaker is actually present in the MT. The second possibility seems more plausible. Each embryo has a special 48-49.5 h developmental program for hatching. This program could be initiated by the circatidal pacemaker in the female, and hatching synchrony may also be enhanced by the same pacemaker.
منابع مشابه
Observations on Egg Hatching in the Estuarine Crab Sesarma haematocheir
A female of the terrestrial crab Sesarma haematoeheir incubates 30,000-50,000 eggs on her abdomen. After 1 month of embryonic development, zoeae larvae are released into estuarine waters within 3-5 sec by means ofvigorous fanning motions of the abdomen. Hatching (breakage of the outer egg membrane) occurs on land just before larval release. The release behavior itself does not cause rupture of ...
متن کاملGlutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats
The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...
متن کاملGlutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats
The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...
متن کاملGlutaminergic receptor in the rostroal ventrolateral medulla mediate the cardiovascular responses to activation of the bed nucleus of the stria terminalis in female ovariectomized rat
Introduction: Experiments were done to investigate the cardiovascular response to glutamate (Glu) injection in the bed nucleus of stria terminalis (BST) in urethane anesthetized ovariectomized (OVX) or OVX estrogen treated (OVX+E) female Wistar rats. In this study also the effect of glutaminergic system of the rostral ventrolateral medulla (RVLM) on Glu stimulation of cardiovascular...
متن کاملEffect of GABAA Receptors in the Rostral Ventrolateral Medulla on Cardiovascular Response to the Activation of the Bed Nucleus of the Stria Terminalis in Female Ovariectomized Rats
Background: The areas of the bed nucleus of the stria terminalis (BST) with a high density of estrogen receptors are involved in cardiovascular regulation and send axonal projections to the rostroventrolateral medulla (RVLM). We aimed to find the contribution of the RVLM to cardiovascular responses elicited by glutamate microinjection into the BST. Methods: Experiments were done in α-ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 205 Pt 22 شماره
صفحات -
تاریخ انتشار 2002